Polynomial solutions of differential-difference equations
نویسندگان
چکیده
1 We investigate the zeros of polynomial solutions to the differential-difference equation P n+1 (x) = A n (x)P ′ n (x) + B n (x)P n (x), n = 0, 1,. .. where A n and B n are polynomials of degree at most 2 and 1 respectively. We address the question of when the zeros are real and simple and whether the zeros of polynomials of adjacent degree are interlac-ing. Our result holds for general classes of polynomials but includes sequences of classical orthogonal polynomials as well as Euler-Frobenius, Bell and other polynomials.
منابع مشابه
NUMERICAL SOLUTION OF THE MOST GENERAL NONLINEAR FREDHOLM INTEGRO-DIFFERENTIAL-DIFFERENCE EQUATIONS BY USING TAYLOR POLYNOMIAL APPROACH
In this study, a Taylor method is developed for numerically solving the high-order most general nonlinear Fredholm integro-differential-difference equations in terms of Taylor expansions. The method is based on transferring the equation and conditions into the matrix equations which leads to solve a system of nonlinear algebraic equations with the unknown Taylor coefficients. Also, we test the ...
متن کاملPolynomial and non-polynomial solutions set for wave equation with using Lie point symmetries
This paper obtains the exact solutions of the wave equation as a second-order partial differential equation (PDE). We are going to calculate polynomial and non-polynomial exact solutions by using Lie point symmetry. We demonstrate the generation of such polynomial through the medium of the group theoretical properties of the equation. A generalized procedure for polynomial solution is pr...
متن کاملAdomian Polynomial and Elzaki Transform Method of Solving Fifth Order Korteweg-De Vries Equation
Elzaki transform and Adomian polynomial is used to obtain the exact solutions of nonlinear fifth order Korteweg-de Vries (KdV) equations. In order to investigate the effectiveness of the method, three fifth order KdV equations were considered. Adomian polynomial is introduced as an essential tool to linearize all the nonlinear terms in any given equation because Elzaki transform cannot handle n...
متن کاملHidden sl 2 - algebra of finite - difference equations
Recently it was found [1] that polynomial solutions of differential equations are connected to finite-dimensional representations of the algebra sl2 of firstorder differential operators. In this Talk it will be shown that there also exists a connection between polynomial solutions of finite-difference equations (like Hahn, Charlier and Meixner polynomials) and unusual finitedimensional represen...
متن کاملConstuction of solitary solutions for nonlinear differential-difference equations via Adomain decomposition method
Here, Adomian decomposition method has been used for finding approximateand numerical solutions of nonlinear differential difference equations arising inmathematical physics. Two models of special interest in physics, namely, theHybrid nonlinear differential difference equation and Relativistic Toda couplednonlinear differential-difference equation are chosen to illustrate the validity andthe g...
متن کاملThermo-elastic analysis of a functionally graded thick sphere by differential quadrature method
Thermo-elastic analysis of a functionally graded hollow sphere is carried out and numerical solutions of displacement, stress and thermal fields are obtained using the Polynomial differential quadrature (PDQ) method. Material properties are assumed to be graded in the radial direction according to a power law function, ho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Approximation Theory
دوره 163 شماره
صفحات -
تاریخ انتشار 2011